收起
大数据的增长让人们做了一些不可思议的事情。采用大数据,机器学习可以预测财产损失和检测欺诈,甚至预测未来的天气事件。然而,这些算法最令人难以置信的应用可能是在医疗保健领域。
由于每位患者都有大量的潜在数据,因此医疗保健系统必须成为基于云计算的系统,以便能够使这些令人难以置信的技术成为主流应用。然而,首席信息官和其他医疗保健主管必须解决许多困难,才能实现这一目标。许多机器学习算法只能与给定的数据一样好,而为它们收集大量的医疗保健数据是一个很高的要求。
众所周知,医疗保健系统是分布式的,当病人的记录被转发时,经常会出现延误。即使是患者的初级保健提供者也常常没有完整的电子健康记录(EHR)。
虽然确实有可能创建可访问的数据集,使精确医学的好处得以实现,但由于缺乏认识和严格的HIPAA法律限制数据共享,因此广泛采用的目标变得复杂。很少有文件像病历那样敏感。如果每个医疗机构开始使用完整的电子健康记录(EHR)进行精准医疗,那么灾难性数据泄漏的机会将大大增加。
每个持有患者记录的数据中心都需要每次都安全地进行保护和退役。尽管人们在网络安全方面取得了很大的飞跃,但医疗保健数据泄漏的数量却在逐年增加。
值得庆幸的是,用于训练算法的患者记录可以匿名化,以减少数据丢失为代价,这至少可以降低初始数据库下游的风险。除了保留初始数据上游泄漏的风险之外,许多人还认为发布甚至匿名的患者数据是对其隐私的一种侵犯。在人们努力实现技术与医疗保健之间建立一种更加共生的关系时,需要解决这些问题。
那么,该如何将大数据和医疗卫生有效结合,UCMT公开课《大数据+医疗卫生》或许可以给你答案!!!